19_a_queen_broadcast
We will succeed - and that success will belong to every one of us.
( (IP-MAT (ILYR (ILYR;{COME_THROUGH} (NP-SBJ (PRO We;{we}))
(MD;_cat_Vi_ will;{will})
(IP-INF-CAT (VB;_I_ succeed;{succeed})))
(PUNC <hyphen>)
(CONJP (CONJ and;{and})
(ILYR (NP-SBJ;{COME_THROUGH} (D that;{that})
(N success;{success}))
(MD;_cat_Vi_ will;{will})
(IP-INF-CAT (VB;_Ipr_ belong;{belong[to]})
(PP-CLR (P-ROLE to;{to})
(NP (Q every;{every})
(N one;{one})
(PP (P-ROLE of;{of})
(NP (PRO us;{we})))))))))
(PUNC .))
(ID 19_a_queen_broadcast))
arc(r_0019_0002__will,r_0019_0003__succeed,scope).
arc(r_0019_0003__succeed,r_0019_0001__We,arg0).
arc(r_0019_0005__and,r_0019_0002__will,conj1).
arc(r_0019_0005__and,r_0019_0011__every__quant,conj2).
arc(r_0019_0008__will,r_0019_0009__belong_r_0019_0010__to,scope).
arc(r_0019_0009__belong_r_0019_0010__to,r_0019_0002__will,arg0).
arc(r_0019_0009__belong_r_0019_0010__to,r_0019_0012__one,arg1).
arc(r_0019_0011__every__quant,r_0019_0008__will,scope).
arc(r_0019_0011__every__quant,r_0019_0012__one,restriction).
arc(r_0019_0012__one,r_0019_0001__We,r_0019_0013__of).
fof(formula,axiom,
? [R_0019_0001__WE,R_0019_0002__WILL_R_0019_0003__SUCCEED,R_0019_0005__AND] :
( r_0019_0001__We(R_0019_0001__WE)
& r_0019_0005__and(R_0019_0005__AND)
& ! [R_0019_0012__ONE] :
( ( r_0019_0012__one(R_0019_0012__ONE)
& has_r_0019_0013__of(R_0019_0012__ONE,R_0019_0001__WE) )
=> ? [R_0019_0008__WILL_R_0019_0009__BELONG_R_0019_0010__TO] :
( r_0019_0008__will_r_0019_0009__belong_r_0019_0010__to(R_0019_0008__WILL_R_0019_0009__BELONG_R_0019_0010__TO)
& has_arg1(R_0019_0008__WILL_R_0019_0009__BELONG_R_0019_0010__TO,R_0019_0012__ONE)
& has_arg0(R_0019_0008__WILL_R_0019_0009__BELONG_R_0019_0010__TO,R_0019_0002__WILL_R_0019_0003__SUCCEED) ) )
& has_conj1(R_0019_0005__AND,R_0019_0002__WILL_R_0019_0003__SUCCEED)
& r_0019_0002__will_r_0019_0003__succeed(R_0019_0002__WILL_R_0019_0003__SUCCEED)
& has_arg0(R_0019_0002__WILL_R_0019_0003__SUCCEED,R_0019_0001__WE) ) ).