10_a_uksc_judgment
56. The answer is that of course it did.

%3 0010_0004__is is 0010_0002__The_3__answer The_answer 0010_0004__is->0010_0002__The_3__answer [arg0] 0010_0008__did did 0010_0004__is->0010_0008__did [prd] 0010_0006__of_course of_course 0010_0008__did->0010_0006__of_course [nim] 0010_0007__it it 0010_0008__did->0010_0007__it [arg0]
arc(r_0010_0004__is,r_0010_0002__The_r_0010_0003__answer,arg0).
arc(r_0010_0004__is,r_0010_0008__did,prd).
arc(r_0010_0008__did,r_0010_0006__of_course,nim).
arc(r_0010_0008__did,r_0010_0007__it,arg0).

n10_a_uksc_judgment n10_a_uksc_judgment__1_1_1_1 56. n10_a_uksc_judgment__1_2_1_1 The n10_a_uksc_judgment__1_2_2_1 answer n10_a_uksc_judgment__1_3_1 is n10_a_uksc_judgment__1_4_1_1_1 that n10_a_uksc_judgment__1_4_1_2_1_1 of_course n10_a_uksc_judgment__1_4_1_3_1_1 it n10_a_uksc_judgment__1_4_1_4_1 did n10_a_uksc_judgment__1_5_1 . n10_a_uksc_judgment__1 IP-MAT n10_a_uksc_judgment__1_1 LST n10_a_uksc_judgment__1->n10_a_uksc_judgment__1_1 n10_a_uksc_judgment__1_2 NP-SBJ n10_a_uksc_judgment__1->n10_a_uksc_judgment__1_2 n10_a_uksc_judgment__1_3 BEP;~equ_Vf n10_a_uksc_judgment__1->n10_a_uksc_judgment__1_3 n10_a_uksc_judgment__1_4 CP-THT-PRD n10_a_uksc_judgment__1->n10_a_uksc_judgment__1_4 n10_a_uksc_judgment__1_5 PUNC n10_a_uksc_judgment__1->n10_a_uksc_judgment__1_5 n10_a_uksc_judgment__1_1_1 LS n10_a_uksc_judgment__1_1->n10_a_uksc_judgment__1_1_1 n10_a_uksc_judgment__1_1_1->n10_a_uksc_judgment__1_1_1_1 n10_a_uksc_judgment__1_2_1 D n10_a_uksc_judgment__1_2->n10_a_uksc_judgment__1_2_1 n10_a_uksc_judgment__1_2_2 N n10_a_uksc_judgment__1_2->n10_a_uksc_judgment__1_2_2 n10_a_uksc_judgment__1_2_1->n10_a_uksc_judgment__1_2_1_1 n10_a_uksc_judgment__1_2_2->n10_a_uksc_judgment__1_2_2_1 n10_a_uksc_judgment__1_3->n10_a_uksc_judgment__1_3_1 n10_a_uksc_judgment__1_4_1 IP-SUB n10_a_uksc_judgment__1_4->n10_a_uksc_judgment__1_4_1 n10_a_uksc_judgment__1_4_1_1 C n10_a_uksc_judgment__1_4_1->n10_a_uksc_judgment__1_4_1_1 n10_a_uksc_judgment__1_4_1_2 ADVP-NIM n10_a_uksc_judgment__1_4_1->n10_a_uksc_judgment__1_4_1_2 n10_a_uksc_judgment__1_4_1_3 NP-SBJ n10_a_uksc_judgment__1_4_1->n10_a_uksc_judgment__1_4_1_3 n10_a_uksc_judgment__1_4_1_4 DOD n10_a_uksc_judgment__1_4_1->n10_a_uksc_judgment__1_4_1_4 n10_a_uksc_judgment__1_4_1_1->n10_a_uksc_judgment__1_4_1_1_1 n10_a_uksc_judgment__1_4_1_2_1 ADV n10_a_uksc_judgment__1_4_1_2->n10_a_uksc_judgment__1_4_1_2_1 n10_a_uksc_judgment__1_4_1_2_1->n10_a_uksc_judgment__1_4_1_2_1_1 n10_a_uksc_judgment__1_4_1_3_1 PRO n10_a_uksc_judgment__1_4_1_3->n10_a_uksc_judgment__1_4_1_3_1 n10_a_uksc_judgment__1_4_1_3_1->n10_a_uksc_judgment__1_4_1_3_1_1 n10_a_uksc_judgment__1_4_1_4->n10_a_uksc_judgment__1_4_1_4_1 n10_a_uksc_judgment__1_5->n10_a_uksc_judgment__1_5_1
( (IP-MAT (LST (LS 56<dot>))
          (NP-SBJ (D The;{the})
                  (N answer;{answer}))
          (BEP;~equ_Vf is;{be})
          (CP-THT-PRD (IP-SUB (C that;{that})
                              (ADVP-NIM (ADV of_course;{of_course}))
                              (NP-SBJ;{PROROGATION} (PRO it;{it}))
                              (DOD did;{do})))
          (PUNC .))
  (ID 10_a_uksc_judgment))